Telegram Group & Telegram Channel
🎲 Задача со стажировки ШАД по вероятности: сколько участников добежит до вершины?

Представим забег 100 человек по узкому скользкому эскалатору. У каждого есть шанс поскользнуться и упасть — тогда он и все, кто бежал за ним, соскальзывают вниз. Добираются до вершины только те, кто был впереди последнего упавшего.

Мы можем настраивать вероятность падения p. Вопрос: какое значение `p` нужно выбрать, чтобы в среднем до вершины добегало ровно 20 человек из 100?

Обозначения:
N = 100: общее количество участников.
K = 20: желаемое среднее количество участников, достигших вершины.
p: вероятность того, что один участник поскользнется и упадет (эту величину нужно найти).

q = 1 - p: вероятность того, что один участник не упадет.
X: случайная величина, равная количеству участников, достигших вершины. Мы хотим, чтобы E[X] = 20.

Логика процесса:
Участник i (где i от 1 до 100) доберется до вершины тогда и только тогда, когда ни один из участников перед ним (включая его самого) не упадет.

То есть, участники 1, 2, ..., i должны успешно пройти свой путь.

Вероятность того, что участник 1 достигнет вершины = P(участник 1 не упал) = q.
Вероятность того, что участник 2 достигнет вершины = P(участник 1 не упал И участник 2 не упал) = q * q = q^2.

Вероятность того, что участник i достигнет вершины = P(участники 1, ..., i не упали) = q^i.

Математическое ожидание E[X]:

Математическое ожидание количества добравшихся до вершины можно вычислить как сумму вероятностей того, что каждый конкретный участник доберется до вершины. Это связано со свойством линейности математического ожидания и использованием индикаторных переменных (I_i = 1, если i-й участник добрался, 0 иначе; E[X] = E[sum(I_i)] = sum(E[I_i]) = sum(P(I_i=1))).
E[X] = P(участник 1 добрался) + P(участник 2 добрался) + ... + P(участник N добрался)
E[X] = q^1 + q^2 + q^3 + ... + q^N
Это сумма первых N членов геометрической прогрессии с первым членом a = q и знаменателем r = q. Формула суммы:
S_N = a * (1 - r^N) / (1 - r)
Подставляем наши значения:
E[X] = q * (1 - q^N) / (1 - q)
Решение уравнения:
Мы хотим, чтобы E[X] = K = 20, при N = 100.
20 = q * (1 - q^100) / (1 - q)
Вспомним, что q = 1 - p. Значит, 1 - q = p.
20 = (1 - p) * (1 - (1 - p)^100) / p
20p = (1 - p) * (1 - (1 - p)^100)

Это уравнение довольно сложно решить аналитически из-за члена (1 - p)^100. Однако мы можем сделать разумное предположение.

Приближение:
Поскольку мы ожидаем, что только 20 из 100 человек доберутся до вершины, это означает, что падения должны происходить относительно часто, и вероятность того, что все 100 человек не упадут (q^100), должна быть очень мала. То есть, q^100 ≈ 0.
Если q^100 пренебрежимо мало по сравнению с 1, то формула для E[X] упрощается:

E[X] ≈ q * (1 - 0) / (1 - q)
E[X] ≈ q / (1 - q)
Теперь подставим желаемое значение E[X] = 20:

20 ≈ q / (1 - q)
20 * (1 - q) ≈ q
20 - 20q ≈ q
20 ≈ 21q
q ≈ 20 / 21
Теперь найдем p:
p = 1 - q
p ≈ 1 - (20 / 21)
p ≈ 1 / 21

Проверка приближения:

Давайте проверим, насколько мало значение q^100 при q = 20/21:
q^100 = (20/21)^100 ≈ (0.95238)^100

Используя калькулятор, (20/21)^100 ≈ 0.0076. Это действительно мало по сравнению с 1.

Посчитаем E[X] с этим приближением:

E[X] = (20/21) * (1 - (20/21)^100) / (1 - 20/21)
E[X] = (20/21) * (1 - 0.0076) / (1/21)
E[X] = 20 * (1 - 0.0076)
E[X] = 20 * 0.9924
E[X] ≈ 19.848

Это очень близко к целевому значению 20.

Ответ:
Чтобы в среднем вершины достигали 20 ребят из 100, вероятность падения p для каждого участника нужно подобрать примерно равной 1/21 (или около 0.0476).

👇 Пишите свое решение в комментариях

@machinelearning_interview



tg-me.com/machinelearning_interview/1728
Create:
Last Update:

🎲 Задача со стажировки ШАД по вероятности: сколько участников добежит до вершины?

Представим забег 100 человек по узкому скользкому эскалатору. У каждого есть шанс поскользнуться и упасть — тогда он и все, кто бежал за ним, соскальзывают вниз. Добираются до вершины только те, кто был впереди последнего упавшего.

Мы можем настраивать вероятность падения p. Вопрос: какое значение `p` нужно выбрать, чтобы в среднем до вершины добегало ровно 20 человек из 100?

Обозначения:
N = 100: общее количество участников.
K = 20: желаемое среднее количество участников, достигших вершины.
p: вероятность того, что один участник поскользнется и упадет (эту величину нужно найти).

q = 1 - p: вероятность того, что один участник не упадет.
X: случайная величина, равная количеству участников, достигших вершины. Мы хотим, чтобы E[X] = 20.

Логика процесса:
Участник i (где i от 1 до 100) доберется до вершины тогда и только тогда, когда ни один из участников перед ним (включая его самого) не упадет.

То есть, участники 1, 2, ..., i должны успешно пройти свой путь.

Вероятность того, что участник 1 достигнет вершины = P(участник 1 не упал) = q.
Вероятность того, что участник 2 достигнет вершины = P(участник 1 не упал И участник 2 не упал) = q * q = q^2.

Вероятность того, что участник i достигнет вершины = P(участники 1, ..., i не упали) = q^i.

Математическое ожидание E[X]:

Математическое ожидание количества добравшихся до вершины можно вычислить как сумму вероятностей того, что каждый конкретный участник доберется до вершины. Это связано со свойством линейности математического ожидания и использованием индикаторных переменных (I_i = 1, если i-й участник добрался, 0 иначе; E[X] = E[sum(I_i)] = sum(E[I_i]) = sum(P(I_i=1))).
E[X] = P(участник 1 добрался) + P(участник 2 добрался) + ... + P(участник N добрался)
E[X] = q^1 + q^2 + q^3 + ... + q^N
Это сумма первых N членов геометрической прогрессии с первым членом a = q и знаменателем r = q. Формула суммы:
S_N = a * (1 - r^N) / (1 - r)
Подставляем наши значения:
E[X] = q * (1 - q^N) / (1 - q)
Решение уравнения:
Мы хотим, чтобы E[X] = K = 20, при N = 100.
20 = q * (1 - q^100) / (1 - q)
Вспомним, что q = 1 - p. Значит, 1 - q = p.
20 = (1 - p) * (1 - (1 - p)^100) / p
20p = (1 - p) * (1 - (1 - p)^100)

Это уравнение довольно сложно решить аналитически из-за члена (1 - p)^100. Однако мы можем сделать разумное предположение.

Приближение:
Поскольку мы ожидаем, что только 20 из 100 человек доберутся до вершины, это означает, что падения должны происходить относительно часто, и вероятность того, что все 100 человек не упадут (q^100), должна быть очень мала. То есть, q^100 ≈ 0.
Если q^100 пренебрежимо мало по сравнению с 1, то формула для E[X] упрощается:

E[X] ≈ q * (1 - 0) / (1 - q)
E[X] ≈ q / (1 - q)
Теперь подставим желаемое значение E[X] = 20:

20 ≈ q / (1 - q)
20 * (1 - q) ≈ q
20 - 20q ≈ q
20 ≈ 21q
q ≈ 20 / 21
Теперь найдем p:
p = 1 - q
p ≈ 1 - (20 / 21)
p ≈ 1 / 21

Проверка приближения:

Давайте проверим, насколько мало значение q^100 при q = 20/21:
q^100 = (20/21)^100 ≈ (0.95238)^100

Используя калькулятор, (20/21)^100 ≈ 0.0076. Это действительно мало по сравнению с 1.

Посчитаем E[X] с этим приближением:

E[X] = (20/21) * (1 - (20/21)^100) / (1 - 20/21)
E[X] = (20/21) * (1 - 0.0076) / (1/21)
E[X] = 20 * (1 - 0.0076)
E[X] = 20 * 0.9924
E[X] ≈ 19.848

Это очень близко к целевому значению 20.

Ответ:
Чтобы в среднем вершины достигали 20 ребят из 100, вероятность падения p для каждого участника нужно подобрать примерно равной 1/21 (или около 0.0476).

👇 Пишите свое решение в комментариях

@machinelearning_interview

BY Machine learning Interview


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/machinelearning_interview/1728

View MORE
Open in Telegram


Machine learning Interview Telegram | DID YOU KNOW?

Date: |

What is Telegram?

Telegram is a cloud-based instant messaging service that has been making rounds as a popular option for those who wish to keep their messages secure. Telegram boasts a collection of different features, but it’s best known for its ability to secure messages and media by encrypting them during transit; this prevents third-parties from snooping on messages easily. Let’s take a look at what Telegram can do and why you might want to use it.

Should I buy bitcoin?

“To the extent it is used I fear it’s often for illicit finance. It’s an extremely inefficient way of conducting transactions, and the amount of energy that’s consumed in processing those transactions is staggering,” the former Fed chairwoman said. Yellen’s comments have been cited as a reason for bitcoin’s recent losses. However, Yellen’s assessment of bitcoin as a inefficient medium of exchange is an important point and one that has already been raised in the past by bitcoin bulls. Using a volatile asset in exchange for goods and services makes little sense if the asset can tumble 10% in a day, or surge 80% over the course of a two months as bitcoin has done in 2021, critics argue. To put a finer point on it, over the past 12 months bitcoin has registered 8 corrections, defined as a decline from a recent peak of at least 10% but not more than 20%, and two bear markets, which are defined as falls of 20% or more, according to Dow Jones Market Data.

Machine learning Interview from us


Telegram Machine learning Interview
FROM USA